
February 2001 The Delphi Magazine 49

Refactoring
In The Real World
by Brandon Smith

In this article I’m going to discuss
how I improved a tool many of

you will find very useful. The main
focus of the article will be the use
of refactoring techniques, as
described in Martin Fowler’s book
Refactoring (see the sidebar).
Along the way, we’ll also talk about
converting procedural code to
object oriented code.

Building Projects
First, however, let me describe the
tool upon which we will perform
these operations: I call the tool
Builder because it is used to build
suites of Delphi programs with
identical compiler settings and
version information. N-tier applica-
tions written in Delphi always
involve at least two executables,
one that lives on the end-user’s
machine and another that lives on
an application server. The applica-
tion I originally wrote Builder to
support consists of 9 executables
on the end-user’s machine and 15
executables on the application

server. Almost all of these pro-
grams share some common code,
and many of them share quite a bit,
so there is a need to periodically
build the whole bunch at one time.
Builder completely automates the
generation of a test or production
build of all 24 executables, so that
they all carry the same version
number and are all built with
identical compiler settings and
switches, using the command-line
compiler.

Some of you are no doubt won-
dering why I don’t let the IDE take
care of this chore for me. After all,
in the IDE all you have to do is point
and click to assemble a project
group (.BPG) and then use the
Build All option on the Projects
menu. Or, as I found in the Borland
newsgroups, you can use Make
-fMyProjects.bpg; however, this
requires additional setup steps,
such as copying each of the IDE
library paths to the system path.

There are several drawbacks to
using the IDE for making testing
and production builds that contain
24 executables. The first is that one

has to go through each and every
project and set up the compiler
and version information, using
more than a few mouse clicks and
keystrokes. If you save the .res or
.dof files within your version con-
trol system, not only will you have
to check out those files in order to
change these settings, but you will
also have to check out the .dpr,
and, if they exist, the .tlb and
_TLB.pas files. You cannot save
changes to the .res file if the associ-
ated .dpr (or the associated type
library files, if any) are read-only.
I’m sure there is some logic here,
but it escapes me. Particularly
since the _TLB.pas file contains a
very strongly worded statement
that any changes you make to it
will be ignored, since it is only
changed by saving the .tlb file. Per-
haps Delphi 6 or 7 will be smart
enough to present a list after a Save
All that explains which files were
not saved and why, but actually
saving the files that could be
saved. Most of us who work with
version control systems soon
learn, usually the hard way, how to
save what’s really changed and
when to ignore the messages
asking if we want to save the
changes to a .dpr when there have
not been any.

Another drawback to using the
IDE to create a production or test
build is that there are also those
pesky environment settings, par-
ticularly the library path, as well as
a number of important compiler
settings, such as those that deal
with debug information. In practi-
cal terms, this means that a build
done on machine A is quite likely
to be different from a build done on
machine B, even if the .res and .dof
files are stored in the version
control system.

The most troublesome draw-
back to using the IDE for a quick
test build is that the machine you
perform it on has to have all the
right components correctly
installed. Now this is no big deal if
you don’t use any custom compo-
nents, or only a few very stable
third-party ones. But somehow I
don’t think you’re really doing
Delphi programming if you don’t
have any custom components,

➤ Figure 1

50 The Delphi Magazine Issue 66

particularly if you have 24
executables that surely must share
some code. In our case, for exam-
ple, there are 6 more application
servers than there are client pro-
grams. Each of those other applica-
tion servers is out there to support
a custom component. There is a
party search component sup-
ported by a dedicated appserver
that conducts the searches, a loca-
tor component with its own server,
a lookup list server, and so on.

As I’m sure every one of us who
has built two or more components
has experienced, a minor change
deep inside a component can not
only create havoc with the compo-
nent’s behavior, but all too fre-
quently provides us with the
wonderful opportunity to refine
the traditional compile-edit-test
cycle into the OOP cycle of
RCCTRSSR: remove component
from palette, code, compile, test,
reinstall, say bad words, and start
over, if you are lucky, otherwise
reinstall Delphi. Delphi’s IDE is
RAD when your components are

stable, but when they are in less
than perfect shape, one learns how
quickly and easily one can crash
the IDE. If your machine is one
where the dance with DPK is going
on, you may be quite reasonably
hesitant to try to do a build of your
multiple project .bpg.

There’s a little secret not explic-
itly mentioned anywhere in the
Borland documents that I’ve seen.
The command-line compiler does
not care what’s on your compo-
nent palette. If you have a custom
component on a form, the only
thing DCC32 cares about is
whether or not it can find the
relevant .pas files mentioned in the
uses clauses. Our production
builds are done on a machine that
has none, yes none, of our custom
components installed! But, even
more important, anyone on the
development team can do a build
on the current source code base
even though his or her own code
may be in a state of chaos. This
becomes very helpful when you
are working on only one of the
executables and you need current
versions of all the others.

Builder Smells
The heart of the Builder tool con-
sists of two parts. The first part is a
technique I worked out for ensur-
ing that the same compiler settings
would be applied to each of the
.dpr files in the Builder project.
Listing 1 is the procedural code
that illustrates how I accom-
plished this. The second part is the
function used to call the DCC32
command-line compiler, Create-
DOSProcessRedirected, a jewel I
found on the internet at www.
experts-exchange.com where an
angel named jeurk had posted it as
a way to capture a DOS session to a
memo. This function takes care of
capturing the results of each com-
pile, although I had to do consider-
able processing on the results to
make them useful.

Listing 1 has several bad odors,
as Martin Fowler would say. Chap-
ter 3 of his book is titled Bad Smells
In Code and is one of the most valu-
able sections of the book. Each of
the 22 smells discussed serves as a
commentary on how to use one or
more of the specific refactoring
techniques detailed in Chapters 6

procedure TF_BuildMain.A_BuildExecute(Sender: TObject);
var
InFile, OutFile, errMsg, cmdline, DestDir, tmp : string;
success : boolean;
i : integer;
tmpsl : tstringlist;
results, summary : tstringlist;

begin
// Set up for compile
fHaltNow := false;
bb_halt.enabled := true;
InFile :=
extractFilePath(application.exename)+'builder.ini';

Outfile := 'dump.dat';
results := tstringlist.create;
summary := tstringlist.create;
summary.add('Summary ');
lb_exe.itemindex := 0;
A_saveProjectExecute(Sender);
chdir(fProjectdir);
tmpsl := tstringlist.create;
tmpsl.loadfromfile('Library.path');
tmp :=
stringreplace(tmpsl.text, #13#10, ';', [rfReplaceAll]);

tmpsl.clear;
tmpsl.loadfromfile('Base.cfg');
tmpsl.add('-U'+tmp);
tmpsl.add('-R'+tmp);
tmpsl.add('-I'+tmp);
tmpsl.add('-O'+tmp);
LB_exe.itemindex := 0;
// Do the compiles
for i := 0 to fexeList.count-1 do begin
if fHaltNow then
break;

LB_exeClick(sender);
ForceDirectories(ExtractFilePath(m_destination.text));
try
chdir(extractFilePath(m_source.text));

except
on e:exception do begin
showmessage('chdir to '+m_source.text+
'failed: '#13#10+e.message);

end;
end;
tmp := changeFileExt(lb_exe.items[i], '.cfg');
tmpsl.saveToFile(tmp);

tmp := ExtractFileName(m_source.text);
if pos('.RC', uppercase(tmp)) > 0 then
cmdline :=
'BRCC32.exe -v -f'+m_destination.text+' '+tmp

else
cmdline := 'DCC32.exe '+ExtractFileName(m_source.text)
+ ' -E'+ExtractFilePath(m_destination.text);

l_progress.caption :=
'compiling '+ ExtractFileName(m_source.text);

Application.processMessages;
success := CreateDOSProcessRedirected(cmdline, infile,
outfile, errmsg);

m_result.lines.LoadFromFile(outfile);
if Not Success then

m_result.lines.insert(0, format('xxxxx>'#13#10
'DCC Failed to load: '+cmdline+
#13#10' Error Code %d',
[GetLastError])+#13#10+errmsg)

else begin
m_result.lines.insert(0, '=====>'#13#10
'DCC started: '+cmdline);

errmsg := m_result.lines[m_result.lines.count-1];
if pos(ExtractFileName(m_source.text),
errmsg) = 0 then
errmsg := 'OK '+lb_exe.items[i]+': '+errmsg

else
errmsg := '--> '+errmsg;

summary.add(errmsg);
results.addstrings(m_result.lines);

end;
lb_exe.itemindex := lb_exe.itemindex + 1;
if lb_exe.itemindex = lb_exe.items.count then
break;

end;
// clean up and present results
summary.add(#13#10'details...');
results.insert(0, summary.text);
MassageResults(results);
m_result.lines.assign(results);
chdir(fProjectdir);
m_result.Lines.savetofile(outfile);
l_progress.caption :=
'Memo saved to '+SlashSep(fprojectDir, outfile);

bb_halt.enabled := false;
results.Free;
tmpsl.free;

end;

➤ Listing 1

52 The Delphi Magazine Issue 66

through 12. The smells emanating
from Listing 1 include Long Method
and Speculative Generality. In other
words, it doesn’t stink too bad. But,
on the other hand, it’s not really
object oriented code either, and
his book is focused on dealing with
an existing object oriented pro-
gram and making it better.

Let’s look at Speculative General-
ity first. In about the middle of the
procedure, the variable cmdline is
set to one of two possibilities:
either we are going to compile with
DCC32 or with BRCC32, depending
on the file extension. What is not at
all clear from this listing is that
there is no way to handle either the
preparation of the .rc file or the
results of compiling such a file. I
had put this conditional in as a
speculation that, in the future, I
wanted to support this feature. It
should be there as a //todo: com-
ment, not as a part of the executing
code. The genesis of this article lies
in how I went about adding this
functionality. As Fowler recom-
mends, adding functionality to an
existing program is always a good
time to refactor. After refactoring,
you will always be much better
equipped to add new functionality.

The Long Method stink in this
procedure has two distinct odors.
The first is the length. Although it
is a matter of personal preference,
a general rule of thumb is that any
method that can’t be completely
viewed on one screen is too long.
This is only a mild smell when
there is a distinct structure, as
there is here: a setup section, a
central loop and a cleanup section.
The refactoring to apply here is

Move Method. All we need to do is
create 3 methods (SetUpForCom-
pile, DoCompile and CleanUpAfter-
wards) and move them out. It’s no
coincidence that the logical way to
break apart this long method cor-
responds to the comments. When
code requires commenting there is
usually a refactoring hiding there
waiting to be found. Fowler likes
replacing a commented section of
code with a method whose name
explains what the code does.

However, as we begin to perform
Move Method, using the small steps
as Fowler recommends, we imme-
diately discover that SetUpForCom-
pile and DoCompile are sharing tem-
porary variables. One of the
refactorings for dealing with tem-
porary variables is Parameterize
Method. But this will lead to
another kind of stink, Long Parame-
ter List, since there are several
strings and stringlists which are
shared between the first and
second new methods.

A large number of shared vari-
ables is a situation that suggests
using Introduce Parameter Object or
Replace Temp With Query. Also,
looking at the code we discover
that some of these variables are
reused. Tmp, for example, is used
for three distinct purposes: first to
transform the library path from a
stringlist to a semicolon-delimited
string, then twice later on to hold
the names of two different files.
The first time I use tmp to hold a file
name is plain nonsense, a pure
waste of processor cycles and I’m
embarrassed to discover I did it:

tmp := changeFileExt(
lb_exe.items[i], ‘.cfg’);

tmpsl.saveToFile(tmp);

This is quickly factored out with
Replace Parameter With Method:

tmpsl.saveToFile(changeFileExt(
lb_exe.items[i], ‘.cfg’));

The second time I use tmp to hold a
file name, however, probably does
save a cycle or two:

tmp := ExtractFileName(
m_source.text);

if pos(‘.RC’,
uppercase(tmp)) > 0 then
cmdline :=
‘BRCC32.exe -v -f’+
m_destination.text+’ ‘+tmp

We are still left with two distinct
uses of tmp. This is not the kind of
reuse object oriented program-
ming is supposed to encourage
and here we would need to use the
refactoring Split Temporary Vari-
able to ensure each variable is
used for just one purpose. And
since refactoring is just as much
about making a program more
understandable as it is about
making it more efficient, we should
split tmp into two string variables:
PreparedPathList and TargetFile-
name.

Fowler would accomplish these
changes in a step-by-step manner.
For example, first we would
declare the new local variable
RCFilename and rewrite this one
section of code using the new vari-
able. Then we we’d recompile and
test to ensure that we did it right.
He does admit, however, that for
something as trivial as this, like me
and you, he would probably make
several of these kinds of changes
before recompiling and testing.

Forest Before The Tree
Before we get lost in the trees
doing this kind of reshuffling, we
need to stand back and look at the
stink emanating from the forest.

The second distinct odor in this
long procedure is the mixture of
plain old procedural logic and
user-interface logic that violates
the spirit of OOP. The first few
lines set up a number of stringlists
and file names needed to perform
the compilation, but mixed in with
them are some statements that

procedure TF_MainForm.A_DoBuildExecute(Sender: TObject);
begin
If SettingsChanged then
saveSettings;

if BuilderObject.MinimizeOnBuild then
application.Minimize;

BuilderObject.HaltNow := false;
EditState := esBuilding;
A_summary.caption := 'Summary';
BuilderObject.execute;
if BuilderObject.MinimizeOnBuild the
application.Restore;

b_exit.default := true;
BuilderObject.ResourceHandler.ClearSettings;
BuilderObject.ResourceHandler.GetSettings(
SlashSep(fProjectDir, cProjectList), rsProject);

m_projectVersion.lines.text :=
BuilderObject.ResourceHandler.DisplayRCData('From files.ini');

SelectFile(LB_files.itemindex);
end;

➤ Listing 2

February 2001 The Delphi Magazine 53

relate to the user interface. My
naming conventions help identify
the latter, since I make an effort to
always name visual parts of my
code with a short abbreviation fol-
lowed by an underscore followed
by a hopefully meaningful name.

What’s not at all clear from read-
ing the code, however, is the rela-
tionship between the non-visual
variable fExeList and the visual
components LB_exe, m_source and
m_destination. FExeList is a string-
list loaded from a section in an ini
file in which the source files (the
.dpr) are to the right of the equals
sign and the destination directory
for that file is to the left. LB_exe dis-
plays the names of the executables
to be built and is built by extracting
the destinations from fExeList.
The onChange event handler for
LB_exe sets m_source and m_desti-
nation from fExeList. Even if you
followed my explanation here, this
is not a good way to go about it.

The solution is to pull out the
parts that perform the multi-pro-
ject build and incorporate them
into a class whose sole function is
to perform the compilations. In the
OOP jargon of the day, this is to
separate the BO from the GUI.
Despite the odor coming from the
body of this procedure, BO does
not stand for Body Odor, but for
Business Object. The business we
want this application to perform is
command-line compilation of a
bunch of Delphi project files. In
other words, our refactoring goal
here is to create a class which
requires no knowledge of the user
interface to do its job. Ideally, the
user interface need only create the
object, set a few properties and call
an execute method.

Listing 2 shows the end result of
the refactoring Convert Procedural
Design To Objects. If you look at the
code included on the disk, how-
ever, you will see that I haven’t
taken advantage of Delphi’s com-
ponent class. I did build a compo-
nent that could be installed on the
palette, but instead of dropping the
builder object on the form and set-
ting the properties at design-time,
I’ve created it at runtime. I don’t
envision ever using this object
anywhere else, so why go to the

trouble of turning a perfectly good
procedural code into an object?

The answer is that I needed to
introduce new functionality: the
ability to set version information
for the whole group of Delphi pro-
jects at one shot. As I started to
think out how to do that, I realized I
really needed to clean things up by
pulling the business logic out of the
user interface. So the first order of
business is to define the builder
object which appears in Listing 2.

Listing 3 shows the general
approach to defining the builder
class, TBuilderClass. As with most
Delphi OOP programs, I’ve used
properties instead of public data
fields. Fowler’s examples are all in

Java, a language which doesn’t
have properties. A small but signif-
icant chunk of the good advice in
both Fowler’s book and the Gang
of Four’s Design Patterns (which
uses mostly C++) is irrelevant to
Delphi coders because neither
Java nor C++ have properties.
Instead, workers in these lan-
guages have to do extra steps to
get the same encapsulation the
Delphi engineer has when setting
up a list of properties, then press-
ing Shift-CTL-C in the IDE.

After pressing Shift-CTL-C on
Listing 3 and starting to flesh out
the methods, I soon discover that I
still have a monster loop in the exe-
cute method. I still have a slew of

TBuilderClass = class(Tcomponent)
public
constructor create(aOwner : tcomponent); override;
destructor destroy; override;
function execute : boolean;
Function InitializeProject(const aProjectDir : string): boolean;
function SaveProjectSettings: boolean;
Property ProjectList : tstringlist read fProjectList write fProjectList;
Property LibraryFile : tstringlist read fLibraryFile write fLibraryFile;
Property ConfigFile : tstringlist read fConfigFile write fconfigFile;
Property ProjectResults : tstringlist
read fProjectResults write fProjectResults;

Property ProjectSummary : tstringlist
read fProjectSummary write fProjectSummary;

Property HaltNow : boolean read fHaltNow write fHaltNow;
published
Property ProjectName : string read fProjectName write fProjectName;
Property ProjectDir : string read fProjectDir write fProjectDir;
Property OnCompileEvent : TCompileNotify
read fOnCompileEvent write fOnCompileEvent;

Property OnCompileStart : TCompileStartNotify
read fOnCompileStart write fOnCompileStart;

Property OnCompileEnd : TCompileEndNotify
read fOnCompileEnd write fOnCompileEnd;

Property OnProjectStart : TCompileNotify
read fOnProjectStart write fOnProjectStart;

Property OnProjectDone : TProjectNotify
read fOnProjectDone write fOnProjectDone;

Property OnProjectHalt : TCompileNotify
read fOnProjectHalt write fOnProjectHalt;

end;

➤ Above: Listing 3

TCompileClass = class(tobject)
public
destructor destroy; override;
Function Execute : boolean;
Property Options : string read fOptions write fOptions;
Property InFile : string read fInfile write fInFile;
Property OutFile : string read fOutfile write fOutfile;
Property ErrMsg : string read fErrMsg write fErrMsg;
Property Success : boolean read fSuccess write fSuccess;
Property Lines : integer read fLines write fLines;
Property Hints : integer read fHints write fHints;
Property Warnings : integer read fWarn write fWarn;
Property Errors : integer read fErr write fErr;
Property Fatals : integer read fFatal write fFatal;
Property ConfigFile : tstringlist read fConfigFile write fConfigFile;
Property Results : tstringlist read fResults write fResults;
Property Summary : tstringlist read fSummary write fSummary;
Property StartTime : TdateTime read fStartTime write fStartTime;
Property EndTime : TdateTime read fEndTime write fEndTime;
Property Hours : word read fhours write fhours;
Property Minutes : word read fMinutes write fMinutes;
Property Seconds : word read fSeconds write fSeconds;
Property MilleSeconds : word read fMS write fMS;
Property ProjectDir : string read fProjectDir write fProjectDir;
Property SourceFullFileName : string read fSourceFullFileName
write fSourceFullFileName;

Property DestinationFullFileName : string read fDestinationFullFileName
write fDestinationFullFileName;

Property OnCompile : TCompileNotify read fOnCompile write fOnCompile;
end;

➤ Below: Listing 4

54 The Delphi Magazine Issue 66

➤ Listing 5

setup statements to make prior to
starting the loop, a slew of special
setups for this iteration of the loop,
and so forth. Loops, conditionals
and case statements are prime can-
didates for introducing a new class
to handle the logic. We will still
need the loop, but we can replace
the guts of it with a new class. List-
ing 4 shows the class I decided was
needed inside the loop,
TCompileClass, the object which
performs the actual compile. I sup-
pose I could have made Listing 4
the parent class and Listing 3 a sub-
class, but I decided the loose cou-
pling of delegation was more
appropriate here. Had I used inher-
itance, I would have to deal with
incest when the child needed to do
things to the parent. Instead, I
added TCompileClass to TBuilder-
Class as a property.

Listing 5 shows the refactored
execute method using the dele-
gated object to perform the com-
pile. Once this code is working, we
can think about introducing the
new functionality we wanted in the
first place. Somehow I don’t think
you’ll be surprised to learn that the
new functionality will be encapsu-
lated in yet another class. Listing 6
shows the public parts of this new
class.

We’ll go into some detail here
because this is an area not well
documented. To understand how
this class works, we need to take a
look at how Delphi incorporates
the version information set in the
project | options dialog into the
executable. The IDE generates a
.res file every time you start a new
project, and if the .res file is miss-
ing for an existing project, the IDE
will generate it. The IDE maintains
control over this .res file. If you
change it using one of the tools
available for performing that
chore, such as Borland’s Resource
Workshop, the IDE will cheerfully
and without warning replace your
changes the next time you modify
the project options.

This .res file contains three kinds
of information put there by the IDE:
the raw data for the main icon, the
language codes and the version
information. To generate the .res
file we want to use in our build, we

need to compile an .rc file using the
BRCC32 compiler. Listing 7 shows
what one of these .res files looks
like and Listing 8 shows the tem-
plate the TResourceHandler class
will use to produce the .rc file we
will need in the middle of our
compile loop. As you can tell from
looking at the template, TResource-
Handler will not be concerned
about the language information or
the more esoteric things like
FILEFLAGSMASK. It will replace only
those portions marked with #
delimited identifiers. Some of you

are no doubt wondering about
Appid. It was a pleasant discovery
to learn that adding information to
the .res file only requires adding a
string using the same format as the
other strings. This can also be
done in the IDE by simply pressing
the down arrow key on the last
defined string.

TResourceHandler has three
chores to perform: gather the

function TBuilderClass.execute: boolean;
var i : integer;
begin
result := true;
try
fHaltNow := false;
if not SetUpProject then begin
result := false;
exit;

end;
fCompiler.InFile := SlashSep(fProjectDir,'started.dat');
fCompiler.Outfile := SlashSep(fProjectDir, cTotDump);
fCompiler.ProjectDir := fProjectDir;
fCompiler.OnCompile := HandleCompileEvent;
fCompiler.configfile.assign(fConfigFile);
for i := 0 to fProjectList.count-1 do begin
if fHaltNow then
break;

fCompiler.DestinationFullFileName := fProjectList.names[i];
fCompiler.SourceFullFileName := fProjectList.values[fProjectList.names[i]];
if fCompiler.Execute then begin
if fCompiler.Success then
Inc(fOKs)

end else begin
Inc(fErrs);

end;
end;
DoProjectDone;

except
on e:exception do begin
DoProjectHalt('Exception thrown in Builder: '+e.message);
result := false;
end;

end;
end;

TResourceHandlerMissingFileNotify =
procedure(const filename, info : string) of object;

TResourceTypeEnum = (reMajor, reMinor, reRelease, reBuild, reProductMajor,
reProductMinor, reProductRelease, reProductBuild, reAppid, reDescription,
reCompany, reComments, reInternalName, reLegalCopyright, reLegalTrademarks,
reProductName, reOriginalFilename, reIconFileName);

TResourceHandler = class(tcomponent)
public
constructor create(aComponent : tcomponent); override;
destructor destroy; override;
Procedure PrepareResourceData(const TargetFileName,
GeneralSettingsFilename : string);

procedure DoFileError(const fn, info : string);
Procedure GetSettings(const PathToIni : string;
FromWhere : TResourceSettingSourceEnum);

Procedure SaveSettings(const PathToIni : string; aSection : string = cVersion);
Procedure ClearSettings;
procedure WriteRCFile;
Function DisplayRCData(aTitle : string): string;
Function VersionSummary: string;
procedure GetVersionInfoFromProgram(aFilename: string);
Property RCMaskFileName : string read fRCMaskFileName write fRCMaskFileName;
Property RCfileName : string read fRCfileName write fRCfileName;
Property ResourceName[index : TResourceTypeEnum] : string
read getResourceName;

Property VersionInfo[index : TResourceTypeEnum] : string
read getVersionInfo write setVersionInfo;

Property VersionSource[Index : TResourceTypeEnum] : TResourceSettingSourceEnum
read getVersionSource Write setVersionSource;

Property Success : boolean read fsuccess write fsuccess;
Property Mask : tstringlist read fMask write fMask;

published
Property OnResourceError : TResourceHandlerMissingFileNotify
read fOnResourceError write fOnResourceError;

end;

➤ Listing 6

February 2001 The Delphi Magazine 55

user’s desired icon and version
information data, perform the
desired substitutions, and save the
new .rc file in the desired place.
Getting the user’s desired icon and
version information is a GUI chore,
but stashing it in a file for retrieval
during the build is a BO chore and,
in this case, I used .ini file technol-
ogy. When Microsoft introduced
the registry in Windows 95 I was
initially glad to get away from .ini
files. However, I’ve been less than

LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US

MAINICON ICON LOADONCALL MOVEABLE DISCARDABLE IMPURE
{
'00 00 01 00 01 00 20 20 00 00 01 00 18 00 A8 0C'
; many lines of hex data deleted...
'00 00 00 00 00 00 00 00 00 00 00 00 00 00'
}

1 VERSIONINFO LOADONCALL MOVEABLE DISCARDABLE IMPURE
FILEVERSION 0, 0, 0, 13
PRODUCTVERSION 1, 1, 1, 195
FILEFLAGSMASK VS_FFI_FILEFLAGSMASK
FILEOS VOS__WINDOWS32
FILETYPE VFT_APP
{
BLOCK "StringFileInfo"
{
BLOCK "040904E4"
{
VALUE "CompanyName", "Synature\000"
VALUE "FileDescription",

"main module for testing ole communications\000"
VALUE "FileVersion", "0.0.0.13\000"
VALUE "InternalName", "testnav main module\000"
VALUE "LegalCopyright", "Brandon C. Smith, 2000\000"
VALUE "LegalTrademarks", "\000"
VALUE "OriginalFilename", "asfd\000"
VALUE "ProductName",
"Main module for testing navigation\000"

VALUE "ProductVersion", "1.1.1.195\000"
VALUE "Comments", "\000"
VALUE "Appid", "234\000"
}

}

BLOCK "VarFileInfo"
{
VALUE "Translation", 1033, 1252
}

}

➤ Listing 7

thrilled at the number of times I’ve
lost all my settings. I don’t use the
registry any more for just that
reason, and I’m sure glad Borland
has a registry settings recovery
option on their CD. I haven’t
noticed any performance differ-
ence between reading the registry
and reading an .ini file.

Another reason for not using the
registry to save the version infor-
mation settings for Builder is
because it soon became obvious
that some of the version informa-
tion, such as description and

filename, belong to the specific
file, while others, such as the ver-
sion numbers, belong to the whole
group. Whilst it would have been
reasonably easy to set up a regis-
try tree for each Builder project, I
felt it much easier to work with
strategically located files. This
makes transporting the setup for a
build from one worker to another
quite easy to perform. See the
working example on the disk for
the details on how the group and
individual file version information
is stored and merged. The only

56 The Delphi Magazine Issue 66

real challenge in terms of coding
the TResourceHandler was translat-
ing the binary icon file to the text
string of hex numbers needed by
the .rc file. As it turned out, a
memory stream was the ideal tool
for extracting the hex values from
an icon file, as shown in Listing 9.

As you can see from Listing 6, the
TResourceHandler is descended
from TComponent. However, I think
now that descending it from
TObject would have been more
appropriate. I’ll leave this chore to
the next refactoring, when I add in
the functionality for handling .dpk

files. The TResourceHandler class
exists to handle the chores relating
to getting version information into
the compile process. It only exists
as a property of the builder class,
along with the compiler class. Like
the compiler class, it does need to
inform the builder class if some-
thing goes wrong. Both of these
embedded classes have event
properties for this purpose, and in
the source code on the disk you
can see how there are private
event handlers in the builder class
to deal with whatever messages
TResourceHander and TCompileClass
need to send to TBuilderClass. For
example, if the icon file specified

does not exist, an error message is
generated, but the compile can
continue.

Separating BO And GUI
Event properties are also the key
to the last part of the job of con-
verting procedural code to object
oriented code. If you recall, one of
our main goals in doing this
refactoring is to separate the busi-
ness logic from the user interface.
In news groups, magazines and
books dealing with OOP and n-tier
development one quite often sees
statements like ‘Create a business
class that has no knowledge of the
user interface,’ or ‘Make sure the
user interface has no knowledge of
the business object’. The general
idea is that the looser the coupling,
the better. That way, a change in
the business logic does not require
a change in the user interface and
vice versa. But a user interface has
to interface with the BO as well as
the user, otherwise the user inter-
faces with nothing useful. And if
the BO can’t tell the user interface
what’s going on, the user will never
know, which might not be such a
bad thing for the programmer. But
most customers are not interested
in a program that does its thing
without any feedback. This is
where event properties come to
the rescue.

As we’ve already seen, the two
embedded classes inform the
builder class about errors through
event handlers. In a similar
manner, the builder class has a

/***
Resourcemask.rc
***/

LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US

MAINICON ICON LOADONCALL MOVEABLE DISCARDABLE IMPURE
{
#ICONDATA#
}

1 VERSIONINFO LOADONCALL MOVEABLE DISCARDABLE IMPURE
FILEVERSION #Major#, #Minor#, #Release#, #Build#
PRODUCTVERSION #ProductMajor#, #ProductMinor#,
#ProductRelease#, #ProductBuild#

FILEFLAGSMASK VS_FFI_FILEFLAGSMASK
FILEOS VOS__WINDOWS32
FILETYPE VFT_APP
{
BLOCK "StringFileInfo"
{
BLOCK "040904E4"
{

VALUE "CompanyName", "#Company#\000"
VALUE "FileDescription", "#Description#\000"
VALUE "FileVersion",
"#Major#.#Minor#.#Release#.#Build#\000"

VALUE "InternalName", "#InternalName#\000"
VALUE "LegalCopyright", "#LegalCopyright#\000"
VALUE "LegalTrademarks", "#LegalTrademarks#\000"
VALUE "OriginalFilename", "#OriginalFilename#\000"
VALUE "ProductName", "#ProductName#\000"
VALUE "ProductVersion",
"#ProductMajor#.#ProductMinor#.#ProductRelease#
.#ProductBuild#\000"

VALUE "Comments", "#Comments#\000"
VALUE "Appid", "#AppID#\000"
}

}

BLOCK "VarFileInfo"
{
VALUE "Translation", 1033, 1252
}

}

➤ Listing 8

➤ Listing 9

function TResourceHandler.ReadAndTranslateIconFile(
var aIconAsString : string) : boolean;

var
i : integer;
iconFileName, hexline : string;
MemStream : TMemoryStream;
p : byte;

begin
result := true;
MemStream := TMemoryStream.create;
try
result := DoesIconFileExist(IconFileName);
if not result then
exit;

MemStream.LoadFromFile(IconFileName);
hexline := '';
aIconAsString := '';
memstream.Seek(0, soFromBeginning);
for i := 1 to MemStream.size do begin
memstream.read(p, 1);
hexline := hexline + IntToHex(Integer(p), 2)+' ';
if (i <> 0) and ((i mod 16) = 0) then begin
setlength(hexline, length(hexline)-1);
hexline := ''''+hexline+'''';
aIconAsString := aIconAsString + hexline+#13#10;
hexline := '';

end;
end;
// pick up the last part of the file if not all lines had 16 bytes
setlength(hexline, length(hexline)-1);
hexline := ''''+hexline+'''';
aIconAsString := aIconAsString + hexline;
If aIconAsString[length(aIconAsString)-1] = #10 then
setLength(aIconAsString, length(aIconAsString)-2)

else
setLength(aIconAsString, length(aIconAsString));

finally
Memstream.free;

end;
end;

February 2001 The Delphi Magazine 57

number of event properties to pro-
vide detailed feedback to the user
interface. To implement this com-
munication, however, the event
handlers must be created within
the user interface code, which
means the user interface has to
‘know’ about the builder object.

I’m sure that there are ways to
code a user interface such that it
does not know what kind of
business object it is dealing with,

Books
Design Patterns: Elements Of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson and John Vlissides is informally known
as the Gang of Four’s Pattern book. Published by
Addison-Wesley in 1995, it has recently become quite
popular because it presents an intelligent taxonomy of
23 of the most important OOP practices and gives
everyone a way to describe what they are doing. It is
geared heavily towards C++ and many Delphi program-
mers will have a hard time following the examples.
However, the descriptions are clear and no program-
mer should have any problem understanding what
each pattern does and how it provides solutions for var-
ious design challenges. On the other hand, without a
reasonably sound knowledge of OOP, some of the pat-
terns may appear to be plain old common sense or may
not make any sense at all. For example, the Proxy pat-
tern is summarized as ‘Provide a surrogate or place
holder for another object to control access to it’. To me,
one of the most obvious instances of this pattern is
found in the Delphi Property keyword. But I’ve encoun-
tered managers who have spent many years coding in
procedural languages and to them this was just a fancy
way of defining a variable. The only way to get through
to an old-style procedural programmer is by touting
reuse, and this book does that very well.

Refactoring: Improving The Design Of Existing Code
by Martin Fowler, with contributions by Kent Beck,
John Brant, William Opdyke and Don Roberts. Pub-
lished by Addison Wesley in 1999, this book is ‘written
for a professional programmer. [To show] how to do

refactoring in a controlled and efficient manner.’
And that is what it does. Fowler defines and describes
in detail a large number of code transformations that
will make your code both more robust and more
understandable. The examples are in Java, but, as
with the Patterns book, the explanations are very
clear and one generally doesn’t need to read the
code to understand how to apply the refactoring
technique being discussed. The step-by-step method-
ology is downright tedious, but I can state from my
own experience that skipping too many steps almost
always leads to problems. Fowler makes several
references to the Patterns book and definitely makes
reading the latter easier. Fowler has a website dedi-
cated to refactoring at www.refactoring.com.

Of the two, I think Refactoring to be the better
book for a Delphi programmer. The Patterns book
tends to be too abstract too often, whereas the
Refactoring book is almost always concrete enough
to be immediately useful. It’s almost as if the Patterns
book is for class designers and the Refactoring book is
for object builders. Perhaps it’s only my predisposi-
tion, but I’ve had more design insights reading the
Refactoring book. The Patterns book gave me names
to hang on to concepts I’ve been using, as well as
some new concepts, but the Refactoring book has
opened many more new doors and new ways to think
about code. For example, I think one of the most
interesting new concepts, one I’ve yet to tackle, is
replacing a case statement with polymorphism.

not counting polymorphism,
where the user interface knows the
parent business object but not the
specific child. However, I am of the
opinion that the loose coupling
needs to be one way: my user
interface knows all about the
public properties and methods
of the business object, while the
business object can still be
run independent of any user
interface.

Conclusions
I found that applying Fowler’s
refactoring techniques enabled
me to add important new function-
ality while rebuilding the applica-
tion in a way that’s more robust
and amenable to further improve-
ment. I’m not sure I’ve sorted out
the responsibilities between the
three classes I migrated the proce-
dural code into, but I’ll be continu-
ing to look for more ways to
improve the code with refactoring.

Brandon Smith (email brandon@
synature.com) is working for Rose
International on a contract with
the Missouri Department of
Health, developing n-tier systems
in Delphi. In his spare time, what
little there is of it, he enjoys his
family, tends his tree plantings,
potters around in his workshop,
practises Tai Chi Chuan and
coaches a local fencing club.

	Building Projects
	Builder Smells
	Forest Before The Tree
	Separating BO And GUI
	Books
	Conclusions

